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Abstract

During cardiopulmonary resuscitation (CPR), end-tidal
CO2 (etCO2) is often used as a surrogate parameter for
systemic blood flow and a sudden rise in etCO2 is regu-
larly associated with a return of spontaneous circulation
(ROSC). We model this transportation of metabolic CO2

from the tissues via systemic perfusion to the lungs, and its
exhalation through the alveoli, in a simple compartment-
based ODE model. The aim is to determine a slowly time-
dependent scalar describing the level of systemic perfusion
based on tidal flow, airway pressure and capnography data
in a multishooting parameter identification approach.

We test our model on synthetically generated data as
well as on data from a porcine model of cardiac arrest.
In the porcine model, we compare the estimated level of
systemic perfusion with invasively measured mean arterial
blood pressure as a surrogate of blood flow.

First experiments on both synthetic and real-world data
show good identifiability for the level of systemic perfusion
based on the capnography data.

A validated simple ODE model for CO2-extraction dur-
ing CPR could help to quantify the effects of tidal vol-
umes and ventilation rates on etCO2 and furthermore as-
sist physicians to detect a ROSC more reliably during out-
of-hospital cardiac arrest.

1. Introduction

Rapid and reliable detection of return of spontaneous
circulation (ROSC) during cardiopulmonary resuscitation
(CPR) is an important, but difficult task. While manual
pulse palpation is time-consuming and poorly specific, a
sudden rise in end-tidal CO2 (etCO2) is regularly asso-
ciated with ROSC [1, 2] . Additionally, etCO2 is com-
monly used as a surrogate parameter for systemic blood

flow during clinical CPR, as metabolic CO2 from the tis-
sues is transported by the blood to the lungs and exhaled
through the alveoli. Thus, increasing etCO2 levels during
CPR could indicate improved systemic perfusion, while
decreasing etCO2 levels might be caused by deteriorat-
ing of systemic perfusion [3]. But a number of variables
such as tidal volume and ventilation rates, but also artefacts
from chest compressions complicate the interpretation of
measured etCO2 [4]. Similarly, taking certain etCO2 lev-
els as ROSC predictor does not lead to consistent threshold
values [5]. Moreover, to identify rising or falling etCO2

levels, a trend in CO2 must be observed, which is possi-
ble only after at least some ventilations, allocating highly
valuable time during a resuscitation attempt.

Lately, many research groups tried to investigate the
capnogram during CPR with respect to chest compres-
sion artifacts and e.g. varying ventilation rates, on a phe-
nomenological level [4,6]. In this work, we model CO2 ex-
traction during ventilation in a simple compartment based
ODE model in order to account for the ventilation related
confounding factors and to maximize the gain of informa-
tion about the level of systemic blood flow given in the
capnogram signal.

2. Methods and Models

2.1. Data Aquiration

Continuous experimental data was recorded in a porcine
model of cardiac arrest. The experiment was approved
by the Austrian Federal Ministry of Education, Science
and Research. Ventilation pressure and tidal flow were
recorded with 200 Hz sampling frequency , while capnog-
raphy was recorded with 40 Hz sampling frequency. In-
vasive arterial, central venous and intracranial blood pres-
sures were recorded with 50 Hz sample frequency. Af-
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Figure 1. Schematical experimental design
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Figure 2. Schematic illustration of model structure.

ter baseline measurements and 5 minutes of cardiac arrest,
chest compressions were performed using a mechanical
compression device (LUCAS, Stryker Medical, Kalama-
zoo, MI) until a ROSC was achieved or CPR was termi-
nated. The timestamps of the chest compressions were
recorded by the compression device. Simultaneously to
chest compressions, epinephrine and shocks were deliv-
ered in 3-minute intervals. Over the total span of the exper-
iment mechanical ventilation was performed. The design
of the experiment is also shown in Figure 1.

2.2. Model Development

We employ a simple compartment-based ODE-system
to model the respiratory system and the CO2-transport.
This model does not aim to describe all processes occur-
ring during CO2 extraction in high detail, but to reflect the
main qualities of the system in order to identify the level
of systemic perfusion. Other physiological parameter like
airway resistance or compliance are estimated simultane-
ously as well. The model consists of measurement com-
partment, a thorax compartment and a tissue compartment,
and describes tidal flow and CO2 transport separately. It
is schematically illustrated in Figure 2.

We model the airflow from the ventilation machine
through measurement compartment to the thorax, influ-
enced by ventilation pressure eg(t), compression pressure
et(t) as well as airway resistance R and lung compliance
C by assuming laminar flow. The change of volume in
thorax compartment V (t) = VT + Ṽ (t) is given by

˙̃V (t) =
∆p(t)

Rt
, with ∆p(t) =

(
eg(t)− eT (t)− Ṽ (t)/C

)
,

(1)
where we have decomposed the alveolar volume V in a
constant part VT and a variable part Ṽ . Since we assume
the volume of the measurement compartment VM constant,
it does not contribute to this equation. While the airway
pressure is included by interpolating measurements, the
CPR pressure eT (t) will be modeled as a convolution of a
unknown function pCPR with delta-peaks at the recorded

time of the compression instances. The unknown function
pCPR will be estimated based on the flow and CO2 during
the parameter identification process.

For modeling the CO2 concentration in measurement,
thorax and tissue compartment (cM , cT , and cZ , respec-
tively), we assume that CO2 is generated at some rate m
in the tissue by a factor m(cz,max − cZ), where cz,max

is a maximal possible CO2 concentration. The CO2 is
transported to the alveoli by blood modeled by a term
qt(cZ − cT ), with qt is the possibly slowly time varying
level of systemic blood flow. For the alveolar and mea-
surement compartment we model the CO2 transport by as-
suming perfect mixing in each compartment and mass con-
servation for the CO2 exchange. We include the anatomi-
cal and the instrumental deadspaces not via separate com-
partments, but model them as a fixed volume VD and VI

with a movable concentration difference layer at position
G ∈ [0, 1], where G = 0 / G = 1 means that the deadspace
is totally filled with air from the inner/outer compartment
respectively. The total compartment volume is the sum of
the proper compartment volume and the contributions from
the adjacent deadspaces. The position of this layer in the
deadspace moves with the direction of the tidal flow. Two
smooth auxiliary functions H± : [0, 1] 7→ [0, 1], for in-
flow (+) and outflow (−) which fulfill H+(1) = 1 and
H−(0) = 0 describe the permeability of the layer for in-
ward/outward flow respectively. This formulation of the
deadspaces is capable to explain delays between a change
in flow and a change in concentrations as well as CO2 pat-
terns during reversed airflow under the presence of chest
compressions. In total, the concentration model is given
by

Ġ1(t) =
1

VDRt
(I+(∆p)(1−H+(G1))−

I+(−∆p)(1−H−(G1)))

Ġ2(t) =
1

VIRt
(I+(∆p)(1−H+(G2))−

I+(−∆p)(1−H−(G2)))

ċM (t) =
−I+(∆p)H+(G2)cM (t)

Rt (VM +G1VD + (1−G2)VI)
+

I+(−∆p)H−(G1)(cT (t)− cM (t))

Rt (VM +G1VD + (1−G2)VI)

ċT (t) =
I+(∆p)H+(G1) (cM (t)− cT (t))

Rt(VT + Ṽ (t) + (1−G1)VD)
+

qt(cZ(t)− cT (t))

ċZ(t) =qT (cT (t)− cZ(t)) +m (cz,max − cZ(t)) , (2)

with I+(x) = max(0, x).
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2.3. Parameter identification

We interpret the ODE-model (1), (2) as a function
G : Rnp+nStates 7→ C1 ([Tstart ,Tend ],R6 ),G(θ, x0 ) = x
which maps a set of parameters θ and initial conditions x0

to the solution of the ODE x on an interval [Tstart, Tend].
Additionally, we define a measurement operator M :
C1 ([Tstart ,Tend ],R6 ), C([Tstart ,Tend ],R2 ),

M
(
(V ,G ,G2 , cM , cT , cZ )

T
(t)

)
=

(
d

dt
V (t), cM (t)

)T

which describes the mapping from the states to the mea-
sured quantities flow and concentration in the measure-
ment compartment. We choose the parameters qt and Rt

to be slowly varying in our model by describing them
as a linear interpolation between grid points with dis-
tance 2 or 6 seconds, respectively. Thus, for given data
d, we are looking for a vector of parameters θ and ini-
tial conditions x0 which minimizes a functional R(θ, x0 )
consisting of the residua of Flow and concentration data,(

rFlow

rConc

)
= MG(θ, x0 )−d , between model output and

data for flow and concentration measurement respectively,
as well as regularization terms for qt and Rt with regular-
ization weights αR, αq and a weight αC for the concentra-
tion term:

R(θ, x0 ) =||rFlow||22 + αc||rConc||22+

αq||
d

dt
qt||22 + αR||

d

dt
Rt||22. (3)

We use a multishooting approach [7, 8] to identify the pa-
rameters. Thus, we solve the ODE system independently
on several subintervals and try to estimate parameters and
freely chooseable initial conditions for each subinterval.
In order to ensure continuity of the total solution at the
boundaries of the subintervals we add constraints to our
functional R via augmented Lagrangian formulation. This
leads to

R̃(θ, x0 ) = ||rFlow ||22 + αc ||rConc ||22 + αq ||
d

dt
qt ||22+

αR||
d

dt
Rt||22 +

Ni∑
k=1

nStates∑
j=1

λjkc(xjk) + µc2(xjk)

(4)

where c(xjk) = x
(0)
j,k − x

(−1)
j,k−1 is the difference between

initial condition of the j-th state in the k-th sub-interval
and the estimated value of the j-th state in the (k − 1)-th
sub-interval at the same time.

We solve the minimization problem minθ,x0
R̃(θ, x0 )

for given values of λkj and µkj via Levenberg-
Marquardt Methods, where we compute the necessary Ja-

cobians
∂x

∂θ
and

∂x

∂x0
by solving the adjoint equation. Af-

ter having obtained an approximate minimizer, we update
λkj and µkj according to [9].

Since a short sensitivity analysis shows that VT , VM

and m are hardly identifiable in this problem, we set them
to fixed values based on literature values or grid search.
Thus, we estimate the following parameters: NR param-
eters for Rt, C, VD, VI , cz.max, Nq parameters for qt,
NCPR parameters describing pCPR and the initial condi-
tions for each subinterval.

3. Results

We test our model on synthetically generated data of
tidal flow, capnography, and ventilation pressure as well
as on data from a porcine model of cardiac arrest. In the
porcine model, we compare the estimated level of systemic
perfusion with invasively measured mean arterial pressure,
while on the synthetic data, the parameter estimation is
compared to the known ground truth.

First experiments on both synthetic and real-world data
show good identifiability for the level of systemic perfu-
sion based on the capnography data. An exemplary re-
sult can be found in Figure 3. The other relevant param-
eters were identified to C ≈ 23.8 ml

hPa , Rt ≈ 18hPa
l/s ,

VD = 99 ml, VI ≈ 10 ml.

4. Discussion

Our proposed method uses the information contained in
the capnogram and tidal flow signal to quantitatively deter-
mine changes in systemic blood flow without delays. It is
able to predict the overall trend of MAP and cardiac output
during an ongoing resuscitation attempt and also provides
information on other respiratory parameters (dead spaces,
resistance, compliance). However, there are some issues
in the model and experimental design that need to be dis-
cussed.

First, the experimental setup and data we used are not
able to fully illustrate the potential of this technique be-
cause ventilation rates and tidal volumes were nearly con-
stant over large periods of time. However, in the real
world, ventilation rates and tidal volumes are not nec-
essarily constant, especially during manual ventilation,
and could strongly influence the end-tidal CO2 concentra-
tion. The proposed method should work well in princi-
ple even under these conditions, but further experimental
data are needed to demonstrate this. In addition, repeated
administration of epinephrine during resuscitation in the
current experimental setup affects vascular resistance and
thus MAP but not necessarily cardiac output and systemic
blood flow. Therefore, we may see deviations from our es-
timated level of systemic perfusion to MAP that may be
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Figure 3. Exemplary situaion of systemic perfusion estimation. The level of systemic perfusion is scaled to the same scale
as the measured arterial blood pressure.

explained by the documented epinephrine medication.
Furthermore, like any method purely based on capnog-

raphy data, our model is not capbale to capture the influ-
ence of shunts and functional deadspaces exhaled CO2,
because the observed exhaled CO2 origins from parts of
the lung which are perfused and ventilated. In presence of
deadspaces and shunts, our estimated parameter q might
be a bad surrogate for cardiac output. The comparison of
the CO2-concentration in the tissue-compartment cZ with
the arterial CO2 pressure form blood gas analysis could
help improve our model and subsequently, assist to mon-
itor arterial CO2 concentrations and identify shunts and
deadspaces during a resuscitation attempt as well.

Finally, the knowledge of the tidal flow data and airway
pressure is necessary to perform the proposed analysis, but
these data could be recorded by new devices to monitor
ventilation.

5. Conclusion

A validated simple ODE model for CO2-extraction dur-
ing CPR could help to quantify the effects of tidal vol-
umes and ventilation rates on etCO2 and furthermore assist
physicians to detect a ROSC more reliably during out-of-
hospital cardiac arrest. Further investigations are neces-
sary to verify the proposed method.
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